探秘金属3D打印中的电弧增材制造技术,国内厂商是怎么做的!
文章和图片来源: 时间:2024.01.04 点击率:
485
电弧增材制造(WAAM)属于定向能沉积(DED)3D打印技术的范畴。定向能沉积技术是一种金属3D打印技术,包括通过安装在多轴臂上的喷嘴沉积粉末或金属丝形式的金属材料。激光、电子束或等离子体等聚焦能源用于熔化材料,然后逐层构建零件。在WAAM中,受电弧焊的启发,使用电弧作为热源。
WAAM 技术基于使用机器人系统的各种自动焊接技术的原理:金属惰性气体 (MIG) 或金属活性气体 (MAG)、钨极惰性气体 (TIG) 或等离子弧线 (PAW),以及Fronius伏能士于2004年创造的CMT冷金属过渡电弧工艺,这个新的MIG/MAG焊接工艺使原来认为完全不可能的钢铁和铝材的温控连接成为可能。WAAM 兼容多种金属,其中包括钛、铝、镍和钢合金等。
Naval Group 3D打印螺旋桨
与其他DED工艺一样,WAAM通常用于维修设备和复制不再生产的零件,以维护旧机器。不过,该技术也可用于制造完整的零件。WAAM 尤其适用于航空、航天、汽车、能源和国防领域,也可用于制造原型、模具、单个零件和小批量生产。不过,尽管它特别适用于制造大型金属零件,但在大规模生产中的应用仍在审查之中。
例如,在航空航天领域,Naval Group“法国海军集团”利用WAAM技术制造了猎雷舰制造螺旋桨。在能源领域,Vallourec瓦克瑞克集团利用WAAM技术生产了第一个密封环,以确保法国电力EDF Hydro公司水电设施的安全,该密封环直径1米,重100千克。在机器人领域,MX3D也使用该技术生产了一个钢结构连接器。MX3D还使用WAAM为石油和天然气行业制造管道连接器,以及大型机械的齿轮和定制部件。MX3D甚至使用WAAM工艺在阿姆斯特丹建造了一座桥梁!此外,Relativity Space 公司还利用这项技术制造了Terran 1轻型发射器。说道Relativity Space,据TCT了解到,2023年4月融速科技(2024 TCT展位号:8F70)正式发布了首款火箭箭体增材装备——星际制造平台AMmake R1,且再2023年9月TCT亚洲展现场上亮相。该设备可能是国内第一台对标Relativity Space公司的StarGate的电弧增材装备,致力于为航天产业领域带来更多创新突破。
AMmake R1平台建成后,将可达到10倍于传统工艺的制造速度,实现短至30天的交付周期,且全流程单平台增减一体式完成。大幅度降低生产成本、材料成本、时间成本。根据不同行业和任何复杂程度的客户的特定需求构建解决方案,从实现火箭贮箱类产品的大批量生产到首次正确生产复合材料定制的航空航天零件。此外,就在2023年的年底,“老牌”电弧增材企业英尼格玛(2024 TCT展位号:7E26)发布了年度成绩单,电弧增材设备装机量累计突破100套。在2023年9月TCT INTRODUCING新品发布舞台首发全新ArcMan系列智能电弧增材设备——智能化原位增减复合制造单元ArcMan M500、超大型模块化扩展电弧增材装备ArcMan V/H系列,针对不同领域不同应用场景,为客户提供面向实际生产的智能化解决方案。英尼格玛在航空航天、船舶、汽车、能源、建筑等各应用领域都已有最新应用案例。其中,定制化程度较高的无人车多使用拓扑结构,减重且增加底盘强度。但拓扑结构形状复杂,传统铸造难以实现。采用英尼格玛电弧增材制造技术,可在保证质量的同时满足个性化生产需求。
随着对高强铝青铜合金大规模的工业化生产和研究的进一步深入,铝青铜已成为航空航天、舰船、车辆等领域应用极其广泛的一种新型铜合金。鑫精合&镭明激光(2024 TCT展位号:7H30)电弧增材制造设备成功打印铜合金零件。
西安鑫精合研发团队通过对铝青铜材料的成型能力和适应性对牌号进行选择,研究掌握了铝青铜材料的工艺与设备的匹配性和成型能力,同时开展了铝青铜在碳钢表面堆焊性能的研究和增材能力。由于电弧增材制造过程中的电弧较难以控制,成型难度较大,容易出现气孔裂纹等缺陷。研发过程中着重对材料的内部质量和性能提升方面做出调整,提出通过高温预热和单层连续成型,层间冷却等方式,结合焊接参数的合理控制和调整克服了以上问题。
通过采用上述技术制造铝青铜构件的的内部质量良好、外观质量较好,产品的性能高稳定性强,通过淬火和时效处理综合性能优异。以ERCuAl-A1为例,电弧增材制造室温拉伸性能可以达到或超越焊丝本身性能。电弧增材制造铝青铜合金以较高的成型效率、质量稳定性和良好的综合能力,预计在航空航天、舰船、车辆等领域具有应用前景。
电弧增材铝合金半精加工
WAAM 工艺也有其局限性。由于WAAM工艺的打印速度更快,与粉末床熔融技术相比,零件的细节和尺寸精度的再现性较差。无论是静态性能还是疲劳性能(当零件受到各种力的作用而导致损坏时),使用 WAAM 技术制造的零件可能存在内部气孔等缺陷,这会降低零件的机械性能,铝制零件尤其如此。残余应力是WAAM技术可能出现的另一种异常情况。残余应力可导致零件尺寸和/或形状变形,特别是通过卷曲、翘曲或分层。所有这些现象的特征都是印刷部件的各层发生变形,无论是顶层、底层,还是在分层的情况下,所有层都会发生变形。这些变形是由极高的工作温度和材料的技术特性造成的。当对部件施加外力时,这些变形会导致部件承受力变差。为了有效减少这些缺陷的发生,有必要了解所有WAAM参数,以便尽可能准确地设置这些参数。这将确保稳定的熔融金属沉积以及恒定的热量。放卷速度、进料速度、电流、电压、料层厚度、保护气体流速和料珠间距都是确保工艺顺利进行的重要因素。不过,也有一些技术解决方案可以缓解这些异常现象。其中包括机械加工硬化或轧制。这种方法是在冷却阶段用滚筒对焊缝施加压力来可以减少气孔。也可对材料进行预热,减少残余应力。
随着关键技术的突破,专用材料的开发、智能装备、工艺及软件的制造能力的提升,WAAM技术有望在航空装备领域大型、中等复杂铝合金、钛合金结构件的制造中得到快速和广泛的应用。
TCT Asia 2024
时间与地点
5月7日 09:00 - 17:30
5月8日 09:00 - 17:30
5月9日 09:00 - 15:00
国家会展中心(上海)7.1&8.1馆