3D打印柔性电子概括下来主要有两大特点,一是体现在“混合”二字,也就是在打印的过程中,不仅仅将液态的导电油墨和其他材料打印成电路的形状,还将电子元器件直接“插入”到电路上;二是体现在柔性方面,通过打印到可拉伸的基体表面上,这种产品就有了完成各种变形的柔性特点。
任何太空任务的功能都由其电子和机电 (EEE) 组件决定。虽然单个标准卫星的尺寸很小,但它可能包含数千个这样的有源和无源电子零件,以及共计数公里的连接链路,ESA欧洲航天局正在研究3D打印这些电子设备,以提高整体稳健性,同时降低质量、制造交货时间和成本。
通过3D打印加工各种电活性材料,例如金属或碳掺杂聚合物,以形成晶体管、电容器和电阻器等设备,以及将它们连接在一起的电连接器。3D打印电子电气设备部件的主要优点是灵活性,几乎可以打印成任何形状,并沿着复杂的几何形状铺设柔性基材,这在传统制造中几乎是不可能的。
ESA欧洲航天局的电子开发团队汇集了来自材料、组件、天线和微波有效载荷等不同专业领域的专家,涵盖ESA 的四个部门:地球观测;人类与机器人工程;技术、工程和质量;电信和集成应用。目标是为将3D打印电子引入航天领域,创建一个共享路线图。
3D打印还可以以低得多的成本生产,根据科技巨头 Mercury Systems 的说法,比标准EEE零件便宜 95%,并且在本地完成,这应合了航天工业的小批量多品种混合要求。也大大缩短了周转时间——从 3-4 个月缩短到 12 小时。
此外,还可以利用比传统硅微电子行业通常使用的材料更便宜的材料,例如电活性聚酯或 PEEK 塑料。这些电路被打印在薄基板上,并且可以打印在现有硬件或结构表面上。
3D打印电子产品在生产方面提供了一种更加可持续的方法,可以减少65-80%的废物、更少的制造工具和更低的温度,在运输、回收生物基塑料方面大大减少碳足迹。
不过3D打印电子产品目前的一个主要缺点是3D打印电子产品尚不具备硅微电子行业中常用制造方法的极高精度和分辨率能力。
另一个问题是,除了少数情况外,与太空环境的兼容性也尚未完全建立。例如,Redwire为NASA提供了卷出式太阳能电池阵列(ROSA),这是一种完全灵活且可展开的太阳能电池阵列,用于国际空间站以及撞击小行星任务,并将用于绕月门户站的推进元件。
最近,Space Foundry在NASA 艾姆斯研究中心 (ARC) 开发了一项突破性的等离子喷射打印技术,并在微重力下成功进行了测试,而爱荷华州立大学的研究人员则与 NASA 合作在失重条件下测试了3D打印电子产品。
欧洲航天局的工作组结合了来自不同领域的专家,目前正在研究3D打印技术在太空中的所有可能应用,然后将其范围缩小到与太空要求兼容的几个改变游戏规则的方向,以优先考虑投资。
2024年观众入场仍需实名认证进场参观
建议您提前完成预约免50元门票
并保存好您的参观确认函
TCT Asia 2024
时间与地点
5月7日 09:00 - 17:30
5月8日 09:00 - 17:30
5月9日 09:00 - 15:00
国家会展中心(上海)7.1&8.1馆